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We discuss the influence of delayed synaptic signal transmission and memorizing prior synaptic activi-
ty on the static and the dynamical properties of attractor neural networks. We find a significant reduc-
tion of the system’s random response and a considerable enhancement of the response to stimuli with fre-
quencies proportional to the inverse delay or memory time scale.

PACS number(s): 87.10.+e, 42.79.Ta, 87.22.Jb

I. INTRODUCTION

Biological neural networks exhibit a broad spectrum of
delay times in intraneural and interneural signal
transmission [1]. Their origin is well understood in the
framework of the physiological Hodgkin-Huxley model
[2] for a single neuron. Several simplified versions of this
model have been proposed that focus on the question of
delayed information transport and incorporate either
discrete [3] or distributed delays [4]. A system consisting
of several such neurons has the associative properties of
the standard attractor neural network with instantaneous
signal transport [5], which was extensively studied over
the past years [6], but is, in addition, capable of learning
and memorizing sequences of patterns [7].

Previous investigations of neural networks with realis-
tic signal transmission times focused on single- or few-
neuron systems [8] or many-neuron systems with sym-
metric synaptic couplings [9]. These couplings guarantee
the existence of a Lyapunov functional that completely
determines the intrinsic dynamics [10]. It was also shown
that such systems are dynamically stable, if there are not
too many inhibitoric synaptic couplings [9]. A many-
neuron network with synaptic memory and rather special
asymmetric synaptic couplings capable of memorizing se-
quences was investigated in [11].

In this work we study a many-neuron system with arbi-
trary asymmetric couplings and a generalized synaptic
transfer function similar to that used in [11]. It accounts
for the history of neural activity via an a priori arbitrary
memory function and thus allows for the treatment of the
dynamical properties of a whole class of neural networks.
Delayed intraneural and interneural signal transmission
corresponds to a specific choice for this memory func-
tion.

We assume that neural activity is governed by
Langevin dynamics and extract global properties of the
network from a functional integral approach [12]. Thus
our investigations extend former studies of asymmetric
attractor networks with instantaneous signal transport
[13-15].
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The outline of the paper is as follows. In Sec. II we
present the generalized postsynaptic potential, which
memorizes prior synaptic activity. Several possible
choices for the memory function are discussed. Neural
(Langevin) dynamics is studied in Sec. III and the post-
synaptic potential is derived in mean-field approximation.
In Sec. IV spectral functions for the case of a nontrivial
memory function are compared to those for instantane-
ous signal transmission. In Sec. V we consider the
analytically solvable spherical model. This section is sub-
divided into two parts. In the first part, we define the
model, derive general relationships, and consider static
properties. In the second part, we analyze the frequency
dependence of the response function of the system, thus
providing the complete dynamical solution of the spheri-
cal model. Section VI concludes this work with a sum-
mary of our results.

II. GENERALIZED
NEURAL SIGNAL TRANSMISSION

We consider a system of N neurons, characterized by
their state o;. The value of o; at time ¢, o;(¢), is deter-
mined by the postsynaptic potential A;(¢), which arises
from the interactions with the other neurons:

hi(1)=3 Jw;([o;],2) . (1)
jEi
Here J;; is the strength of the interaction exerted by neu-
ron j on neuron i and is in general (i.e., for asymmetric
networks) different from J;. The generalized synaptic
transfer function w; of neuron j is defined as

wj([oj],t)=f_twdt’f(t—t’)aj(t')

=[x fxo,e—x), 2

which physiologically corresponds to the synaptic output
of neuron j, integrated over all times prior to ¢ with a
weight function f, the so-called memory function, which
is normalized as
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t , oy — © —
f_wdt Flt—t") fo dx f(x)=1. 3)

Note that w;([o;],?) is a functional of o; in the sense
that it depends on all values of o ; at times prior to z. For
the sake of brevity, we will subsequently no longer denote
this functional dependence explicitly. Equation (2)
defines a class of neural networks with generalized synap-
tic signal transmission. In the following, we discuss
specific choices for the memory function f.

@) If
f(x)=8(x) 4)

we obtain the case of instantaneous signal transfer
[14,15].
(ii) Delayed signal transmission corresponds to

Sf(x)=8(x—1), (5)
where 7> 0 is the delay time [16].
(iii) If
f(x)=71"lexp{ —x /7} (6)
the past is exponentially forgotten with characteristic
time 7 [17].

(iv) The case

flx= 1/3_7'7 exp{ — (x /7)) %

corresponds to “Gaussian oblivion.”
(v) Constant memory back to a time ¢ —7 in the past is
parametrized by

fx)=r"'0(r—x) . (8)

The above choices for f are the most simple ones in the
sense that they contain no more than one free parameter,
parametrizing the scale of delay or oblivion of the neural
network.

III. LANGEVIN DYNAMICS
AND MEAN-FIELD APPROXIMATION

We assume the dynamics of each neuron i to be
governed by a Langevin equation, coupled to the other
N — 1 neurons via the postsynaptic potential (1),

A;(1)=Tg19,0,()—h,()—h2(t)—E&;(2)

dH,,(a,(1)) _

Z[1,T= f:Z)afD& exp{Lgy[o,8]}

xexp |2 [arar p> (010w 010wy + 125

t=#_/

where D& =]]J;,[d&,(t)/27] and

Here I'y ! is the time scale of changes in neural activity,
h? is an external field, and &, is white noise with variance

(E(DE;(t"))=2TT; '8(t—1")8,; . (10)

The angular brackets denote the “thermal” average, i.e.,
the average with respect to the white noise £. Since each
o; may assume values — o <0,(#) < + o, one introduces
the potential

H,,A(a)=%02+ka4 (11)

in (9), which restricts the neural activity to the physiolog-
ically realized range of values via an appropriate choice
of rand A.

The interaction matrix J;; entering the postsynaptic
potential (1) can be decomposed into a completely sym-
metric and completely asymmetric part,

Jy=J5+kI®, k20, (12)

where k is the degree of asymmetry [15]. The case k=0
corresponds to the fully symmetric model [5], whereas
k=1 corresponds to a fully asymmetric model [15]. For
the sake of simplicity and since we want to focus on the
effects of finite signal transfer times and the history of
synaptic activity rather than on realistic learning rules
[18], we consider J;; and J/* to be random Gaussian vari-
ables with zero mean and variance

J: 1
N 1+k2°

Here the brackets denote the “quenched” average, i.e.,
the average with respect to the distribution P[J] of the
couplings J;;. In Appendix C of [15] it was shown how
the above case is related to a dilute network [14,19,20].

The stochastic equation (9) leads to a generating func-
tional of the form [12,13]

Z[1;J,61= [ Do Fexp [fdt zl,.(t)a,-m]

(P 1=[T)r]= (13)

X [18[A; (0], (14)

it
with Do =]];,do;(¢). The Jacobian & ensures proper
normalization of Z [/;J,£]. Employing
dé ()
2

and averaging over white noise and random couplings
[13] we arrive at the generating functional

8[A(0]= [ exp{ —iA,;(1)6,(1)} (15)

k 1=k i6 (0w (0)id (e w (e | (16)
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The functional (16) generates average neuron-neuron correlation functions, e.g., the neuron autocorrelation

5UnZ[1,7]

Cle—1)=Uoi(0o, (N 1= 500570

’

1=T=0

and average response functions, e.g., the local single-neuron response

Glr—t)= 8[(a;(1))] _ 8nzZ[L]]
8hXt")  |yo—g SL(t)8I(1) |j=p—pop

—T519,0,(0)+h2e)+TT; lie (t)-di"*—(fﬂl 17
0o 9:0; i o 10 do (1)

(18)

>t (19)

Since in general the single- or multiple-unit activity is the experimentally relevant observable and not the synaptic out-
put [21], o itself enters the definition of these quantities and not the quantity w of Eq. (2) [22].
The calculation of (16) simplifies considerably in the mean-field approximation (see Ref. [13] for details). The result is

2
ZyralLT]= fi)oi)&exp{Lo[a,ﬁ]}exp {%fdt dt'z

where

Clt—t")=[{w;(w;(t'))]

=[dudv fwf@ICt—u—(t'=v), @D
St —t)=[{i&;(tw,(t))]
:IO""du fu)G(t—u—t") . (22)

The upper boundary of the integration in Eq. (22) is due
to the causality requirement for the response function
(19).

A mean-field equation of motion for o; is obtained by
defining a Gaussian effective noise field ¢,(¢) with zero

mean and variance
(¢,-(t)¢j(t’))=8ij(2T1"0_'8(t-—t’)+J2@(t—t')) . (23)

Then one removes averaging over the noise field ¢ in
Z[l,1]via

z(1,11= [ D¢ P$1Z[1,T34],

with

(24)

Z(1,T;¢1= [ Do D& Fexp | [ dt = (0o (o)
+T(0)ig (1)

—ie (A (D] [,

25)
A(D=Tq'3,0,(6)—h;(t)—h2(2)—¢;(1)
dH,,(0,(1)) 6
don
1.2
Ei(t)5121+’;2 [argt—twe) . @7

et —1")ie (g (1) +21=K
1+k

2
5 9(t—1")i6 (Hw,(t")

:

(20)

Applying Eq. (15) to (25) (and setting 7=0) implies the
mean-field equation

A (5)=0 (28)

for o;. The postsynaptic potential in the mean-field ap-
proximation is given by (27). As usual, the mean-field ap-
proximation has changed spatial nonlocalities in h;(z) to
a temporal nonlocality in A;(¢), Eq. (27).

IV. SPECTRAL PROPERTIES
OF THE POSTSYNAPTIC POTENTIAL

The spectral representation of the mean-field equation
of motion (26) reads

Aw)=—iol; 'o (@)= h(w)—h)w)

—¢;(0)+H,;,[0,(0)]=0, (29)
where, according to Eq. (11),
H,’A[a,-(w)]=ra,~(co)+4kfg&@iai(wl)ai(wz)
’ 2T 2w
Xo(w—w,—w,) (30
and
hiw)=J? ::L/]j S(o)w (o) . (31)
Here
S(w)=g(w)G(w) , (32)
w;(w)=glw)o (o), (33)
and
g(a))=f0 dx f(x)ei®* . (34)

The variance of the noise field reads in Fourier represen-
tation
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(¢,-(w)¢j(w‘))=21r8(m+w')[2TI‘J‘+J2@(co)]8,-j , (35)
where
Clw)=glw)g(—w)C(w) . (36)

The effect of finite signal transmission times and memor-
izing the prior synaptic activity is now obvious from Egs.
(32), (33), and (36): in the spectral representation they re-
sult in multiplying the quantities G(w) and o,(®) enter-
ing the postsynaptic potential with the Fourier transform
of f(x)®(x), Eq. (34), and the quantity C(w) appearing in
the variance of the noise field with the corresponding ab-
solute amount squared [f(x)®(x) is real; hence
g(—w)=g*(w)]. Thus the rather complicated integra-
tion over the synaptic history in time representation cor-
responds to the simple multiplication with a frequency-
dependent dimensionless factor in Fourier representation
[23].

For the class of neural networks considered in this
work, the complete information concerning synaptic de-
lay and memory is contained in the function g(w). In the
following we list the functions g(w) corresponding to the
different choices for f presented in Sec. II and discuss
their effects.

(i) For instantaneous signal transfer we simply have

glw)=1, 37

recovering the case discussed in [14,15].
(ii) For signal transfer after the delay time = we obtain

glw)=e'" (38)

There is no effect on the variance of the noise field ¢;(w),
but the postsynaptic potential acquires an additional os-

cillatoric factor " in comparison to case (i). Its static
part is obviously not affected.
(iii) Exponential oblivion yields
1t+ioT
(w)=—= . (39)
& 1+ (o7)?

The part of the variance of ¢;(w) proportional to C(w)
thus acquires a factor [1+ (w7)?]7}, suppressing frequen-
cy components of the noise generated by the autocorrela-
tion, which are much larger than the rate of oblivion
®>>7"!. On small time scales, where synaptic memory
still persists, the noise is therefore purely thermal and
neither affected by static correlations nor, for k%0, by
“dynamical excess noise” [15]. The postsynaptic poten-
tial is modified by the factor (1+iwr)?*/[1+(w7)?]? in-
troducing a more complicated frequency dependence on
the real and imaginary parts of the response function, but
leaving the static part unchanged. Details will be dis-
cussed for the spherical model (see Sec. V).

(iv) “Gaussian oblivion” corresponds to

2
(w)=exp | — | 2T
g P 5
3 2
T
l+l\/ 1F1 1,5‘,— —2“ ] (40)

The effects on the variance of ¢ and the postsynaptic po-

tential are technically more intricate but physically simi-
lar to case (iii), wherefore we do not discuss them in de-
tail.
(v) A constant memory up to time ¢—7 in the past
yields
ioT
—1
glo)=5—. (41)
ioT
This has similar effects as in case (iii) in the static and the
high-frequency limit. In addition, for frequencies which
are multiples of 27 /7, g(®w) vanishes. This renders the
variance of ¢ purely thermal and eliminates the corre-
sponding Fourier components from the spectrum of the
mean-field potential 4;(2n7/7)=0,n=1,2,....

V. THE SPHERICAL MODEL

In this section we discuss the analytically solvable
spherical model for the class of neural networks present-
ed above and explicitly compare cases (ii) and (iii) of Secs.
IT and IV with the case of instantaneous signal transfer.
First, the model is defined and static properties such as
the susceptibility, the Edward-Anderson parameter, and
the temperature of a possible spin-glass transition are dis-
cussed. In the second part, we present the complete
dynamical solution for the response function.

A. The model and its static properties

The spherical model is defined by the choice A=0 in
Eq. (11) and the global constraint [13]

1 N
1= lim — 3 okt)=

2 — —
Jim [(oX 1)) ]=C(t=0). (42)

i=1

This determines the value of r in (11), which would other-
wise be a free parameter. Note, however, that the restric-
tion (42) on the neural activity o;(¢) has, from the neuro-
physiological point of view, the same effect as the model
with 7 fixed and A > 0: in both cases there is a certain en-
ergetically favored value o], ]af| < oo, for the neural ac-
tivity. The difference is that this value may be a priori
chosen to be finite for free parameters r,A, while in the
spherical model it is completely determined by the intrin-
sic dynamics.

In the absence of nonlinear terms we write the mean-
field equation (29) in the form [13]

G Yw)o(w)=¢;(0)+hlw), (43)
where

G Yw)= —iwly lpp—J2 1—

w)G(w) . (44)

k2g

In the following we will measure frequencies in units of
I, and times in units of I’y !, allowing us to set [(=1.
Moreover, we define

P el (45)
1+k?
and consider #?=0. From Eq. (44) we obtain
G Ho)=Ltr—io+V(r—io)—4kg*(w)] (46)
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and
r[|G(w)] >— A(w)]+wB(®)
ReG(w)= , (47)
eGlo) |G(w)| *—[ 4% w)+BXw)]
-2
ImG _ o[|G(w)|"*+ 4(»)]+rB(w) ’ 48
MG )= )~ —[ 4 %@)+ BX )] “8
where
A(w)=kRegw) , (49)
B(w)=«kImg¥w) . (50)

|G(w)| 2 is the physical root of
0={|G(w)| *—[ 4% w)+BXw)]}*—|G(w)| 2
X {(r’+0)[|G(0)| *+ 4% w)+BHw)]
—2[(r’—0?) A(0)—2roB(»)]|G(w)| 2} . (51)

For further use we give the real and the imaginary part of
g% ) and the absolute amount squared of g(w) for the
three cases (i)—(iii) of Secs. II and IV:

1, (i)

RegXw)= jcos2ewT , (ii) (52)
[1—(0r)?)/[1+(0r)?)?, (i),
0, (i)

ImgXw)= {sin2wr , (ii) (53)
207/[1+(0r)?)?, (i),
1, (i)

lg(w)>= {1, (i) (54)

[1+(or)?]7", (i) .
From Eq. (35), Eq. (43) (for h?=0), and
(0(w)o;(0")) =270+ 0" )C(w) (55)
one obtains
[1G(@)| > —J%|g(w)?]C(w)=2T . (56)

Decomposing this equation into its zero- and finite-
frequency parts with C(w)=C(w)+276(w)g (cf. [13]),
where g is the Edward-Anderson parameter, one obtains
= 2T
Clw)=
|G(0)| 72— J%|g(w)?

(57)

and
g=J7*%g(0)|*¢*%q , (58)

with the susceptibility Y =G(w=0). From this equation
and |g(0)|?2=1 for all cases under consideration, we draw
the following conclusion: no matter whether there are
synaptic delay or memory effects, below the temperature
T, where the Edward-Anderson parameter becomes
finite, the susceptibility is

y=J1. (59)

Therefore, below T, the parameter r is always constant
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and can be simply obtained from Eq. (47) for o =0:

2J
1+k2°

Obviously, synaptic delay and memory do not influence
results involving the static part of the response function.
This is by far nontrivial: although one would naively ex-
pect no effect on any static quantity according to the ex-
plicit form of g(®) (see Sec. IV), this does not hold for the
Edward-Anderson parameter,

(60)

r=

=1 —F(r=0)=1— [ 32 &
g=1-C(t=0)=1 5 Clo) . (61)

The value of the integral depends on the actual form of
g(w) [cf. Egs. (51) and (57)]. Of course, a definite value
can be obtained only after solving (51) for |G(w)| 2. The
solution of this equation also provides the complete fre-
quency dependence of G(w) and C(w) through Egs. (47),
(48), and (57); see also below.

Above T, the explicit solution of the problem is more
complicated: one has to solve Eq. (51) simultaneously
with the r-fixing constraint

do ~ do 2T
1= [ ==Cw)= [ ==
f 2 (@) f 27 |G(w)| 2—J%g(w)]?

Equation (62) also serves to determine T,: the low-
frequency behavior of C(w) decides whether this equa-
tion can l)e fulfilled for finite T, or only for T, =0, for the
former, C(®) must have an integrable infrared divergence
Clw)~w™?% a<1 [13]. To explicitly calculate the in-
frared behavior one considers (46) at T, i.e., where (60)
may be employed,

. (62)

_ J io
G Yw)= -
() ) >
172
4 |pelz=khgXe) . Jo o
(1+Kk2)? 1+k2 4
(63)

For the low-frequency limit of this equation, in both
cases (ii) and (iii) we may write g%(w)=~1-+2iwr+0(w?),
including case (i) as the special case 7=0. One now
readily obtains the low-frequency expansion

G- J+V —iJ(14+2J1)e!?+0(w) , k=0
(@17 o[ 1+k2+27r(1—k2)]/2k2+0 (?),
k>0. (64)
This implies
gy |2 K0 (65)
|G(w)] 2 —J?%|g(w) o, k>0,

which leads to the conclusion that only in the symmetric
case a spin-glass phase may exist at finite temperatures
[13]. This result is again independent of the delay or
memory effects. Most of the global properties of the net-
work are thus unaffected by finite signal transmission
times and the possibility of memorizing prior synaptic ac-
tivity.
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B. Dynamics of the response function

All dynamical quantities, e.g., (47), (48), and (57), de-
pend on the solution of Eq. (51). In the following, we re-
strict our investigations to T=T,, since in this case r is
simply given by (60). As mentioned above, for arbitrary
T one would have to solve (51) simultaneously with (62)
to obtain a self-consistent value for r. For the sake of
simplicity, we only consider the case J=1.

In general, Eq. (51) has four (complex) roots, but only
one has the property that |G(w)|~? is both real and
larger than one. This is the physical solution, since it
leads to a finite, real value for G(z). For the fully asym-
metric case (k =1 and consequently x=0) the solution is
particularly simple [13],

_ 1
ri4e?’

independent of delay or memory effects. Since for k=1
all neurons are mutually decoupled [the mean-field aver-
aged potential /; vanishes; see Eq. (27)], the dynamics of
such a network is completely governed by “random
response.”

In Fig. 1 we show (66) together with |G(w)|? for k =0
and 0.5 as a function of the frequency w (in units of I'y) in
the case (i) of instantaneous signal transmission [13]. One
observes that different degrees of asymmetry influence
only the domain of small w: the more symmetric a net-
work, the less the long-wavelength “random” response.
However, above o~ 10T, the frequency spectrum rapidly
approaches that of white noise ( ~® ~2) in all cases.

Figure 2 shows the effect of delayed signal transmis-
sion, case (ii), for a fully symmetric network, k =0 [Fig.
2(a)], and a partially asymmetric network with k=0.5
[Fig. 2(b)]. The solid line corresponds to instantaneous
signal transmission or vanishing delay time 7 (cf. also Fig.
1). The dashed and the dotted lines correspond to a delay
time of 7=T; ! and 2Ty !, respectively.

One clearly observes two features: (a) the delay consid-
erably suppresses long-wavelength random response and
(b) it superimposes an oscillatory structure on top of this

|G(w)|?= (66)

—— k=0
----- k=0.5
k=1

0 2 4 L, 6 8 10
ol

FIG. 1. Fourier spectrum of the absolute amount squared of
the response function |G(w)|?, for the case of instantaneous sig-
nal transfer and various degrees of asymmetry: k =0 (full line),
k =0.5 (dashed line), and kK =1 (dotted line).
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10°
(a)
—— instant.
fffff delay, ;=1
N - delay, T[=2
3 10"
(O]
2
% 2 4 , 6 8 10
ol
10°
(b)
instant.
fffff delay, 1r,=1
o - delay, TI;=2
3 10
S
10° —~ -
0 2 4 6 8 10

FIG. 2. |G(w)|? for the case of finite discrete delay time
7=T¢ ! (dashed line) and 7=2T;! (dotted line) in comparison
to instantaneous signal transfer (full line) for (a) k=0 and (b)
k=0.5. The fully asymmetric case k =1 is identical to the full
line in Fig. 1.

reduced random background. As one would expect, the
period of the oscillation is proportional to 77! [cf. Egs.
(49)—-(53)]. The longer the delay time, the more
suppressed the long-wavelength random response, the
more pronounced the peaks of the oscillations, and the
larger the number of oscillatoric peaks.

We note that such oscillatoric structures are' generic to
delay dynamics; see, for instance, the Mackey-Glass
equation [24] or the dynamics of graded-response neu-
rons with discrete delay [10]. Solutions include fixed
points, periodic limit cycles [9], and chaotic trajectories.
Such a diversity of temporal phenomena is possible, since
due to the discrete delay the underlying set of equations
describes an infinite-dimensional dynamical system. As
has been shown by Farmer [25], in the chaotic state the
corresponding power spectrum gives rise to motion on
very different time scales and exhibits a curious modula-
tion that is quite similar to the shape observed in Fig. 2.

Figure 2 can be interpreted in the sense that the
response of the neuron to external stimuli is no longer
more or less random, as in the case of instantaneous sig-
nal transfer, but will be enhanced, if the stimuli’s time
dependence is “in resonance” with the system’s intrinsic
delay time 7. This property could imply that the system
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is capable of self-organization.

The oscillatoric structures in the frequency spectrum
are less pronounced for increasing o and k. For w = 10T,
they are negligible for all k: stimuli that are too rapidly
oscillating only generate a white-noise response from the
neuron. In the limit kK — 1 they vanish completely for all
: a fully asymmetric network responds only with “ran-
dom activity.”

In Figs. 3(a) and 3(b) we present the results of the cor-
responding investigation for “‘exponential oblivion,” case
(iii). In this case, the long-wavelength noise is more
suppressed the longer the system is able to memorize pri-
or synaptic activity. However, instead of an oscillatory
structure there is only a slight and rather broad enhance-
ment of the response function above the reduced random
background. Again, these effects vanish for large o and
are less pronounced when k is increased towards the limit
of complete randomness k =1. We conclude that delayed
signal transfer and memorizing prior synaptic activity
has no major influence on the static properties of the
class of networks under consideration, but drastically
changes their dynamical behavior.

10°
: (@
4
A
i instant.
~~~~~ memory, 1l =1
o - memory, tl=2
3 10
©
10*
0
10°
(b)
W
instant.
« T memory, =1
o “ e MEMONY, T y=2
2 10 N
10%
0 2 4 6 8 10

FIG. 3. |G(w)|* for the case of exponential oblivion with
time r=T5 ! (dashed line) and 7=2I'y ! (dotted line) in compar-
ison to instantaneous signal transfer (full line) for (a) k=0 and
(b) k=0.5. The fully asymmetric case k =1 is identical to the
full line in Fig. 1.
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VI. SUMMARY AND CONCLUSIONS

In this work we have investigated the effects of delayed
signal transmission and synaptic memory on static and
dynamical properties of a neural network with random
and, in general, asymmetric synaptic couplings. We have
generalized the standard, instantaneous synaptic signal
transfer to account for signal delays and memorizing pri-
or synaptic activity. The dynamical equation for the ac-
tivity of a single neuron in the network was solved in the
mean-field approximation. We found that the
modification introduced by delay and memory effects on
the frequency spectrum of the mean-field potential and
the autocorrelation function simply amounts to a multi-
plication with the square or the absolute amount squared,
respectively, of the Fourier transform of the memory
function. An explicit solution was obtained in the frame-
work of the spherical model. It was found that static
properties of the network, such as the susceptibility or
the transition temperature to a spin-glass phase, are, in
general, not affected by delay or memory effects.

On the other hand, the qualitative behavior of dynami-
cal quantities is essentially changed. Our analysis of the
response function of the system leads to the following re-
sult: the amount of long-wavelength random response is
considerably reduced and the response of the system to
organized, nontrivial stimuli enhanced. In particular, de-
layed signal transfer converts a system that exhibits a
more or less random response to external stimuli for in-
stantaneous signal transfer into a system responding par-
ticularly strongly to stimuli that are in resonance with
the intrinsic delay time. Such a feature seems to be a
necessary prerequisite for systems capable of self-
organization.

So far, our investigations focused on the case of ran-
dom synaptic couplings, a simple, one-parametric
memory function, and the spherical model at T=T,.
This leaves a broad spectrum for future, more detailed,
and, eventually, neurophysiologically more realistic in-
vestigations.

(a) In general, i.e., for k0, the spin-glass transition
temperature T, vanishes and thus the autocorrelation is
completely static [cf. Eq. (57)]. At finite temperatures,
however, C(t) should, for the case of delayed synaptic
transfer, exhibit oscillatoric behavior very similar to the
one observed in the visual cortex of the cat [26].

(b) For the general, nonlinear case with the potential
(11) there might be qualitative changes of our results ob-
tained in the spherical model. As shown for Ising spins,
the existence of a spin-glass phase at 7=0 depends also
on the value of the asymmetry. For 0=k =k ,~0.31,
spins may at least partially freeze, while for larger values
of k one observes random or ‘“‘chaotic’ spin motion [27].
Also, the length of transients (the time the system needs
to relax onto an attractor) grows like a power with the
system size for k <k, ,~1/V'3, but exponentially for
larger values of k [28]. It remains an open question how
these results change under inclusion of delay or memory
times.

(c) Our simple choices for the memory function could
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be considerably improved, for example, by combining the
aspects of memory and delay or by introducing several
delay time scales.

(d) The synaptic couplings should be chosen according
to a learning algorithm capable of pattern recognition
[18].

Finally, our rather general treatment opens the possi-
bility to apply it also to other, dynamically coupled, sto-
chastic systems.
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